metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(μ -diethylphosphido- $\kappa^2 P: P$)bis[bis-(2,4,6-trimethylphenyl)indium(III)]

Glen G. Briand,^a* Andreas Decken,^b Dane A. Knackstedt^a and Caleb D. Martin^a

^aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, Canada E4L 1G8, and ^bDepartment of Chemistry. University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 Correspondence e-mail: gbriand@mta.ca

Received 23 September 2011; accepted 14 October 2011

Key indicators: single-crystal X-ray study; T = 198 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.078; data-to-parameter ratio = 21.2.

The title compound, $[In_2(C_9H_{11})_4(C_4H_{10}P)_2]$, contains a centrosymmetric In₂P₂ core with short intermolecular In-P bonds. This core has acute P-In-P and obtuse In-P-In bond angles compared with other $[R_2 In PR'_2]_2$ analogues, due to the presence of the bulky aromatic substituents on the In atom and the non-sterically demanding ethyl substituents on the P atom.

Related literature

For related dimeric phosphanylindanes, see: Alcock et al. (1989); Wells et al. (1992); Aitchison et al. (1989); Beachley et al. (1987, 1993, 1995, 2001); Culp et al. (1997); Malik et al. (1996); Thomas et al. (2002); Wells et al. (1993); von Hanisch (2001). For related trimeric phosphanylindanes, see: Burns et al. (1994); Werner & Neumüller (1996); Banks et al. (1991).

Experimental

Crystal data [In₂(C₉H₁₁)₄(C₄H₁₀P)₂] $V = 4265.6 (17) \text{ Å}^3$ $M_r = 884.53$ Z = 4Monoclinic, C2/c Mo $K\alpha$ radiation a = 22.323 (4) Å $\mu = 1.18 \text{ mm}^$ b = 15.494 (4) Å T = 198 Kc = 14.331 (3) Å 0.23 \times 0.20 \times 0.01 mm $\beta = 120.618 \ (4)^{\circ}$

Data collection

```
Bruker SMART1000/P4
  diffractometer
Absorption correction: multi-scan
                                          3470 reflections with I > 2\sigma(I)
  (SADABS; Sheldrick, 2008a)
  T_{\min} = 0.777, T_{\max} = 0.988
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ 225 parameters $wR(F^2) = 0.078$ H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.65 \text{ e} \text{ Å}^{-3}$ S = 1.09 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ 4771 reflections

14538 measured reflections

 $R_{\rm int} = 0.038$

4771 independent reflections

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2456).

References

- Aitchison, K. A., Julius Backer-Dirks, J. D., Bradley, D. C., Faktor, M. M., Frigo, D. M., Hursthouse, M. B., Hussain, B. & Short, R. L. (1989). J. Organomet. Chem. 366, 11-23.
- Alcock, N. W., Degnam, I. A., Wallbridge, M. G. H., Powell, H. R., McPartlin, M. & Sheldrick, G. M. (1989). J. Organomet. Chem. 361, C33-C36.
- Banks, M. A., Beachley, O. T. Jr, Buttrey, L. A., Churchill, M. R. & Fettinger, J. C. (1991). Organometallics, 10, 1901-1906.
- Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (1993). Organometallics, 12, 3992-3997.
- Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (2001). Organometallics, 20, 4896-4902.
- Beachley, O. T. Jr, Kopasz, J. P., Zhang, H., Hunter, W. E. & Atwood, J. L. (1987). J. Organomet. Chem. 325, 69-81.
- Beachley, O. T. Jr, Maloney, J. D., Banks, M. A. & Rogers, R. D. (1995). Organometallics, 14, 3448-3454.

Brandenburg, K. (2011). DIAMOND, Crystal Impact GbR, Bonn, Germany, Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.

- Burns, J. A., Dillingham, M. D. B., Hill, J. B., Gripper, K. D., Pennington, W. T. & Robinson, G. H. (1994). Organometallics, 13, 1514-1517.
- Culp, R. D., Cowley, A. H., Decken, A., Jones, R. A., Bond, M. R., Mokry, L. M. & Carrano, C. J. (1997). Inorg. Chem. 36, 5165-5172.
- Hanisch, C. von (2001). Z. Anorg. Allg. Chem. 627, 68-72.
- Malik, M. A., Haggata, S. W., Motevalli, M. & O'Brien, P. (1996). J. Organomet. Chem. 524, 95-101.
- Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Thomas, F., Schulz, S. & Nieger, M. (2002). Z. Anorg. Allg. Chem. 628, 235-242.
- Wells, R. L., McPhail, A. T., Jones, L. J. & Self, M. F. (1993). J. Organomet. Chem. 449, 85-94.
- Wells, R. L., McPhail, A. T. & Self, M. F. (1992). Organometallics, 11, 221-225. Werner, B. & Neumüller, B. (1996). Organometallics, 15, 4258-4263.

Acta Cryst. (2011). E67, m1578 [doi:10.1107/S1600536811042668]

$Bis(\mu$ -diethylphosphido- $\kappa^2 P: P$)bis[bis(2,4,6-trimethylphenyl)indium(III)]

G. G. Briand, A. Decken, D. A. Knackstedt and C. D. Martin

Comment

Phosphanylindanes $[R_2 \text{In} PR'_2]_n$ form dimeric or trimeric structures in the solid state *via* intermolecular In—P coordinate bonding interactions (Beachley *et al.*, 2001; Werner & Neumuller 1996). Dimeric structures feature distorted tetrahedral geometries at indium and phosphorus, and planar four-membered In₂P₂ ring cores. In—P bond distances within the ring are similar and differ by less than 0.05 Å in all reported structures (Wells *et al.*, 1993). The structure of **I** (Fig. 1) shows a dimer in the solid state, with a characteristic In₂P₂ core and distorted tetrahedral geometries at the four coordinate indium and phosphorus centres. The In—P bond distances are similar [In—P = 2.6300 (12) Å, In—Pⁱ = 2.6364 (9) Å] and are in the range for previously reported dimeric phosphanylindanes [2.612 (1)–2.712 (1) Å] (Wells *et al.*, 1993; Beachley *et al.*, 1993). However, the ring P—In—Pⁱ bond angle [81.56 (3)°] is at the lower limit of the range of reported values for [R_2 InP R'_2]₂ structures [81.80 (7)–87.53 (3)°] (Beachley *et al.*, 1987; von Hanisch, 2001), and the In—P—Inⁱ bond angle [98.44 (3)°] is at the upper limit of reported values [92.47 (3)–98.20 (7)°] (von Hanisch, 2001; Beachley *et al.*, 1987). The significant distortion of the In₂P₂ ring is likely a result of the bulky mesityl groups on indium, which affect a compression of the P—In—Pⁱ bond angles. Conversely, the non-bulky ethyl groups on phosphorus allows for expansion of the In—P—Inⁱ bond angles.

Experimental

Preparation of [(2,4,6-Me₃C₆H₂)₂InPEt₂]₂ (I). Trismesityl indium (0.520 g, 1.10 mmol) was added to a solution of diethyl phosphine (0.100 g, 1.10 mmol) in toluene (7.5 ml). The reaction mixture was stirred at 45°C for 72 h, after which time a white precipitate had formed. The precipitate was removed by filtration, dried *in vacuo*, and washed with toluene (2×5 ml) and hexane (3 ml) (yield 0.110 g, 22%). Mp: 188°C. Crystals of I were obtained by dissolving the product in dichloromethane and allowing the solution to sit at 23°C for 12 h.

Refinement

H atoms were included in calculated positions and refined using a riding model.

Figures

Fig. 1. X-ray crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x + 1/2, -y + 1/2, -z + 1. Selected bond distances (Å) and angles (°): In—P 2.6300 (12), In—Pⁱ 2.6364 (9), In—C1 2.190 (3), In—C10 2.215 (3), P—C19 1.866 (3), P—C21 1.856 (3), P—In—Pⁱ 81.56 (3), In—P—Inⁱ 98.44 (3), C1—In—C10 117.6 (1), C19—P—C21 104.4 (2).

Bis(μ -diethylphosphido- $\kappa^2 P:P$)bis[bis(2,4,6- trimethylphenyl)indium(III)]

F(000) = 1824

 $\theta = 2.7 - 28.1^{\circ}$

 $\mu = 1.18 \text{ mm}^{-1}$

Plate, colourless $0.23 \times 0.20 \times 0.01 \text{ mm}$

T = 198 K

 $D_{\rm x} = 1.377 \ {\rm Mg \ m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6933 reflections

Crystal data

[In₂(C₉H₁₁)₄(C₄H₁₀P)₂] $M_r = 884.53$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.323 (4) Å b = 15.494 (4) Å c = 14.331 (3) Å β = 120.618 (4)° V = 4265.6 (17) Å³ Z = 4

Data collection

Bruker SMART1000/P4 diffractometer	4771 independent reflections
Radiation source: fine-focus sealed tube, K760	3470 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>)	$h = -28 \rightarrow 27$
$T_{\min} = 0.777, \ T_{\max} = 0.988$	$k = -19 \rightarrow 19$
14538 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.078$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0318P)^{2} + 1.4614P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4771 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
225 parameters	$\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections

NMR data (p.p.m., CDCl₃): ¹H NMR, 0.88 (m, 6H, PCH₂CH₃), 1.83 (q, ³J(¹H-¹H) = 7 Hz, 4H, PCH₂CH₃), 2.24 (s, 6H, 2,4,6-*Me*₃C₆H₂), 2.33 (s, 12H, 2,4,6-*Me*₃C₆H₂), 6.78 (s, 4H, 2,4,6-Me₃C₆H₂); ¹³C{¹H}11.7 (PCH₂CH₃), 13.8 (PCH₂CH₃), 21.3 (s, 2,4,6-*Me*₃C₆H₂), 27.7 (s, 2,4,6-*Me*₃C₆H₂), 126.8 (s, 2,4,6-Me₃C₆H₂), 136.6 (s, 2,4,6-Me₃C₆H₂), 144.1 (s, 2,4,6-Me₃C₆H₂); ³¹P NMR, δ - 44.63 (s). FT—IR: 538*m*, 607vw, 673w, 708w, 752w, 800w, 845*m*, 976w, 1030w, 1042w, 1090w, 1149vw, 1244w, 1259w, 1288w, 1402w, 1547w, 1595vw, 1712vw.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
In1	0.231901 (11)	0.163644 (15)	0.585903 (16)	0.03479 (8)
P1	0.21902 (4)	0.33051 (6)	0.54684 (6)	0.03532 (19)
C1	0.14507 (16)	0.0724 (2)	0.5087 (2)	0.0355 (7)
C2	0.07490 (17)	0.0952 (2)	0.4400 (2)	0.0430 (8)
C3	0.02405 (18)	0.0319 (3)	0.3942 (3)	0.0504 (9)
H3	-0.0230	0.0488	0.3476	0.061*
C4	0.03963 (19)	-0.0550 (3)	0.4142 (3)	0.0512 (10)
C5	0.10908 (19)	-0.0781 (2)	0.4811 (3)	0.0466 (9)
Н5	0.1210	-0.1375	0.4954	0.056*
C6	0.16177 (17)	-0.0161 (2)	0.5276 (2)	0.0381 (8)
C7	0.0530 (2)	0.1886 (3)	0.4137 (3)	0.0607 (11)
H7A	0.0020	0.1922	0.3735	0.091*
H7B	0.0710	0.2124	0.3695	0.091*
H7C	0.0716	0.2216	0.4812	0.091*
C8	-0.0172 (2)	-0.1223 (3)	0.3645 (4)	0.0719 (13)
H8A	-0.0539	-0.1079	0.3803	0.108*
H8B	0.0023	-0.1790	0.3951	0.108*
H8C	-0.0369	-0.1236	0.2858	0.108*
C9	0.23652 (17)	-0.0451 (2)	0.5954 (3)	0.0464 (8)
H9A	0.2378	-0.1068	0.6114	0.070*
H9B	0.2595	-0.0124	0.6634	0.070*
Н9С	0.2607	-0.0350	0.5553	0.070*
C10	0.30035 (17)	0.1564 (2)	0.7643 (2)	0.0394 (8)
C11	0.37154 (17)	0.1357 (2)	0.8185 (2)	0.0427 (8)
C12	0.41094 (19)	0.1333 (2)	0.9321 (3)	0.0512 (9)
H12	0.4590	0.1193	0.9670	0.061*
C13	0.3812 (2)	0.1508 (2)	0.9945 (3)	0.0541 (10)
C14	0.3113 (2)	0.1726 (2)	0.9417 (3)	0.0520 (10)
H14	0.2903	0.1858	0.9834	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.27101 (18)	0.1755 (2)	0.8287 (3)	0.0437 (8)
C16	0.40779 (19)	0.1146 (3)	0.7567 (3)	0.0576 (10)
H16A	0.3855	0.0644	0.7102	0.086*
H16B	0.4569	0.1016	0.8080	0.086*
H16C	0.4046	0.1642	0.7119	0.086*
C17	0.4242 (2)	0.1459 (3)	1.1178 (3)	0.0770 (14)
H17A	0.4729	0.1341	1.1407	0.115*
H17B	0.4062	0.0994	1.1433	0.115*
H17C	0.4210	0.2009	1.1488	0.115*
C18	0.19456 (18)	0.1971 (3)	0.7786 (3)	0.0541 (10)
H18A	0.1883	0.2598	0.7698	0.081*
H18B	0.1779	0.1764	0.8260	0.081*
H18C	0.1680	0.1692	0.7076	0.081*
C19	0.29184 (17)	0.3701 (2)	0.6794 (2)	0.0414 (8)
H19A	0.2829	0.3512	0.7371	0.050*
H19B	0.3352	0.3416	0.6930	0.050*
C20	0.30422 (19)	0.4667 (2)	0.6901 (3)	0.0496 (9)
H20A	0.3211	0.4852	0.6421	0.074*
H20B	0.3390	0.4808	0.7653	0.074*
H20C	0.2605	0.4965	0.6698	0.074*
C21	0.14350 (17)	0.3982 (2)	0.5211 (3)	0.0441 (8)
H21A	0.1544	0.4590	0.5144	0.053*
H21B	0.1031	0.3809	0.4505	0.053*
C22	0.12205 (18)	0.3937 (3)	0.6068 (3)	0.0527 (9)
H22A	0.1039	0.3360	0.6063	0.079*
H22B	0.0859	0.4369	0.5905	0.079*
H22C	0.1626	0.4053	0.6785	0.079*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
In1	0.02880 (13)	0.04999 (15)	0.01987 (11)	-0.01078 (11)	0.00826 (9)	0.00045 (10)
P1	0.0310 (4)	0.0489 (5)	0.0237 (4)	-0.0081 (4)	0.0122 (3)	-0.0014 (4)
C1	0.0328 (17)	0.053 (2)	0.0194 (14)	-0.0126 (15)	0.0121 (13)	-0.0020 (14)
C2	0.0355 (19)	0.059 (2)	0.0300 (17)	-0.0130 (17)	0.0137 (15)	-0.0048 (16)
C3	0.0330 (19)	0.070 (3)	0.043 (2)	-0.0120 (18)	0.0159 (16)	-0.0112 (18)
C4	0.042 (2)	0.071 (3)	0.046 (2)	-0.026 (2)	0.0267 (18)	-0.0234 (19)
C5	0.057 (2)	0.050 (2)	0.045 (2)	-0.0126 (18)	0.0349 (19)	-0.0124 (16)
C6	0.0377 (18)	0.054 (2)	0.0261 (15)	-0.0101 (16)	0.0188 (14)	-0.0049 (14)
C7	0.038 (2)	0.068 (3)	0.052 (2)	-0.0092 (19)	0.0052 (18)	0.0079 (19)
C8	0.061 (3)	0.085 (3)	0.077 (3)	-0.038 (2)	0.040 (2)	-0.035 (3)
C9	0.045 (2)	0.053 (2)	0.0365 (19)	-0.0034 (18)	0.0176 (17)	0.0005 (16)
C10	0.0374 (18)	0.050 (2)	0.0220 (15)	-0.0155 (16)	0.0089 (13)	0.0015 (14)
C11	0.0372 (19)	0.057 (2)	0.0255 (16)	-0.0129 (16)	0.0098 (14)	0.0013 (14)
C12	0.038 (2)	0.068 (2)	0.0303 (18)	-0.0126 (18)	0.0045 (15)	0.0032 (16)
C13	0.056 (2)	0.069 (3)	0.0236 (17)	-0.021 (2)	0.0109 (16)	0.0005 (16)
C14	0.053 (2)	0.072 (3)	0.0273 (17)	-0.018 (2)	0.0175 (16)	-0.0053 (17)
C15	0.0394 (19)	0.058 (2)	0.0277 (16)	-0.0146 (17)	0.0128 (14)	0.0006 (15)

C16	0.040 (2)	0.091 (3)	0.0348 (19)	-0.004 (2)	0.0141 (17)	0.002 (2)	
C17	0.072 (3)	0.112 (4)	0.0230 (18)	-0.021 (3)	0.0070 (18)	0.002 (2)	
C18	0.044 (2)	0.080 (3)	0.039 (2)	-0.007 (2)	0.0216 (18)	0.0019 (18)	
C19	0.0381 (19)	0.058 (2)	0.0238 (16)	-0.0072 (16)	0.0126 (14)	-0.0021 (14)	
C20	0.055 (2)	0.060 (2)	0.0350 (19)	-0.0194 (19)	0.0234 (17)	-0.0112 (16)	
C21	0.0364 (19)	0.057 (2)	0.0365 (18)	-0.0003 (17)	0.0165 (15)	0.0003 (16)	
C22	0.041 (2)	0.078 (3)	0.0373 (19)	-0.004 (2)	0.0193 (17)	-0.0078 (18)	
Geometric paran	neters (Å, °)						
In1—C1		2.190 (3)	C11	—C16	1.509	(5)	
In1—C10		2.215 (3)	C12	—C13	1.385	(5)	
In1—P1		2.6300 (12)	C12	—Н12	0.950	0	
In1—P1 ⁱ		2.6364 (9)	C13	—C14	1.386	(5)	
P1—C21		1.856 (3)	C13	—C17	1.524	1.500 (5)	
P1—C19		1.866 (3)	C14		1.397	(4)	
P1—In1 ⁱ		2.6364 (9)	C14	—H14	0.950	0	
C1-C2		1.406 (4)	C15		1.514 (5)		
C1—C6		1.409 (5)	C16	—H16A	0.9800		
C2—C3		1.386 (5)	C16	—H16B	0.9800		
C2—C7		1.512 (5)	C16	—Н16С	0.9800		
C3—C4		1.384 (5)	C17	—Н17А	0.980	0	
С3—Н3		0.9500	C17	—H17B	0.9800		
C4—C5		1.392 (5)	C17	—H17C	0.980	0	
C4—C8		1.511 (5)	C18	—H18A	0.9800		
C5—C6		1.398 (4)	C18	—H18B	0.980	0	
С5—Н5		0.9500	C18	—H18C	0.980	0	
С6—С9		1.510 (4)	C19	—C20	1.515	(5)	
C7—H7A		0.9800	C19	—H19A	0.990	0	
С7—Н7В		0.9800	C19—H19B 0.9900		0		
С7—Н7С		0.9800	C20—H20A		0.9800		
C8—H8A		0.9800	C20	С20—Н20В		0.9800	
C8—H8B		0.9800	C20—H20C		0.980	0	
C8—H8C		0.9800	C21	—C22	1.530	(4)	
С9—Н9А		0.9800	C21	—H21A	0.990	0	
С9—Н9В		0.9800	C21	—H21B	0.990	0	
С9—Н9С		0.9800	C22	—H22A	0.980	0	
C10—C11		1.405 (5)	C22	—H22B	0.980	0	
C10—C13		1.408 (5)	C22	—H22C	0.980	0	
		1.402 (4)					
Cl—lnl—Cl0		117.60 (11)	C13		121.4	(3)	
CI—InI—PI		123.68 (9)	C13		119.3		
CIO—InI—PI		103.40 (9)	CII		119.3		
C1—In1—P1 ¹		104.11 (7)	C12	—C13—C14	118.2	(3)	
C10—In1—P1 ⁱ		122.61 (9)	C12		120.9	(4)	
P1—In1—P1 ⁱ		81.56 (3)	C14		120.9	(4)	
C21—P1—C19		104.40 (16)	C13		121.4	(3)	
C21—P1—In1		125.97 (11)	C13		119.3		

C19—P1—In1	99.36 (11)	C15—C14—H14	119.3
C21—P1—In1 ⁱ	120.44 (11)	C14—C15—C10	120.9 (3)
C19—P1—In1 ⁱ	104.85 (10)	C14—C15—C18	117.5 (3)
In1—P1—In1 ⁱ	98.44 (3)	C10—C15—C18	121.6 (3)
C2—C1—C6	118.1 (3)	C11—C16—H16A	109.5
C2—C1—In1	125.1 (2)	C11—C16—H16B	109.5
C6—C1—In1	116.8 (2)	H16A—C16—H16B	109.5
C3—C2—C1	120.3 (3)	C11—C16—H16C	109.5
C3—C2—C7	118.4 (3)	H16A—C16—H16C	109.5
C1—C2—C7	121.3 (3)	H16B—C16—H16C	109.5
C4—C3—C2	122.1 (3)	C13—C17—H17A	109.5
С4—С3—Н3	119.0	С13—С17—Н17В	109.5
С2—С3—Н3	119.0	H17A—C17—H17B	109.5
C3—C4—C5	117.9 (3)	С13—С17—Н17С	109.5
C3—C4—C8	120.8 (4)	Н17А—С17—Н17С	109.5
C5—C4—C8	121.3 (4)	H17B—C17—H17C	109.5
C4—C5—C6	121.5 (3)	C15—C18—H18A	109.5
С4—С5—Н5	119.3	C15-C18-H18B	109.5
С6—С5—Н5	119.3	H18A—C18—H18B	109.5
C5—C6—C1	120.1 (3)	C15—C18—H18C	109.5
C5—C6—C9	119.1 (3)	H18A—C18—H18C	109.5
C1—C6—C9	120.8 (3)	H18B—C18—H18C	109.5
С2—С7—Н7А	109.5	C20-C19-P1	116.6 (2)
С2—С7—Н7В	109.5	С20—С19—Н19А	108.1
Н7А—С7—Н7В	109.5	P1-C19-H19A	108.1
С2—С7—Н7С	109.5	С20—С19—Н19В	108.1
H7A—C7—H7C	109.5	P1—C19—H19B	108.1
H7B—C7—H7C	109.5	H19A—C19—H19B	107.3
С4—С8—Н8А	109.5	C19—C20—H20A	109.5
С4—С8—Н8В	109.5	C19—C20—H20B	109.5
H8A—C8—H8B	109.5	H20A—C20—H20B	109.5
C4—C8—H8C	109.5	С19—С20—Н20С	109.5
H8A—C8—H8C	109.5	H20A-C20-H20C	109.5
H8B—C8—H8C	109.5	H20B-C20-H20C	109.5
С6—С9—Н9А	109.5	C22—C21—P1	116.1 (2)
С6—С9—Н9В	109.5	C22—C21—H21A	108.3
Н9А—С9—Н9В	109.5	P1—C21—H21A	108.3
С6—С9—Н9С	109.5	C22—C21—H21B	108.3
Н9А—С9—Н9С	109.5	P1—C21—H21B	108.3
Н9В—С9—Н9С	109.5	H21A—C21—H21B	107.4
C11—C10—C15	117.3 (3)	C21—C22—H22A	109.5
C11—C10—In1	124.8 (2)	C21—C22—H22B	109.5
C15—C10—In1	117.9 (2)	H22A—C22—H22B	109.5
C12—C11—C10	120.8 (3)	C21—C22—H22C	109.5
C12—C11—C16	118.0 (3)	H22A—C22—H22C	109.5
C10-C11-C16	121.2 (3)	H22B—C22—H22C	109.5
	. 1		

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1.

